写在前面: 下面, 所有的 mm 都代表整数, 所有的 ν\nu 都表示"可能是整数, 可能不是整数"; ()k(-)^k 代表 (1)k(-1)^k.

Bessel function

在柱坐标系中对Hemholtz方程 2u+k2u=0\nabla^2 u + k^2 u = 0 分离变量, 角向的方程就是Bessel方程. Bessel 方程的解记作 J(x)J(x), xx 称作宗量, 反映在Bessel方程上, 就是

1rddr[rR(r)]+[k2λμr2]中的(k2λ)r\frac{1}{r} \frac{ \text{d}}{ \text{d} r } \left[ r R'(r) \right] + \left[ k^2 -\lambda - \frac{\mu}{r^2} \right] \text{中的} \sqrt{(k^2 - \lambda )} r

使用级数解法可以得到Bessel方程之解.

The expression of Bessel function is:

J±ν(x)=k=0()kk!Γ(k+ν+1)(x2)2k±ν(0)\boxed{J_{\pm\nu}(x) = \sum_{k=0}^{\infty} \frac{(-)^k}{k! \Gamma(k + \nu + 1)} \left( \frac{x}{2} \right) ^{2k \pm \nu}\tag0}

Properties of Bessel Equation

Parity

By using eq(0), we can verify that

mZ,Jm(x)=()mJm(x)\boxed{\forall m \in \Z, J_{m}(-x) = (-)^m J_m(x)}

Note: Here, m|m| must be an integer.

Generating function

exp[x2(t1t)]=n=+Jn(x)tn\boxed{\text{exp} \left[ \frac{x}{2}(t - \frac{1}{t} ) \right] = \sum_{n=-\infty}^{+\infty} J_n(x) t^n}

The generating function can be used to prove the iteration relation of Bessel function / integral expression.

Iteration relation

Here are two important iteration relations(which can be used to define the so-called cylindrical runction).

By using the relation

Jn(x)=k=0J±ν(x)=k=0()kk!Γ(k+ν+1)(x2)2k±νJ_n(x) = \sum_{k=0}{\infty} J_{\pm\nu}(x) = \sum_{k=0}^{\infty} \frac{(-)^k}{k! \Gamma(k + \nu + 1)} \left( \frac{x}{2} \right) ^{2k \pm \nu}

we can get the following ralations:

  1. ddx[xmJm(x)]=xmJm1(x)(rel1)\boxed{\frac{ \text{d}}{ \text{d} x } [x^m J_m(x)]= x^m J_{m-1}(x) \tag{rel1}}

  2. ddx[xmJm(x)]=xmJm+1(x)(rel2)\boxed{\frac{ \text{d}}{ \text{d} x } [x^{-m} J_m(x)] = - x^{-m} J_{m+1} (x) \tag{rel2}}

  3. You can also derive more iteration relation by applying the operator dkdxk\frac{ \text{d}^k}{ \text{d} x^k } on the x±mJm(x)x^{\pm m}J_m(x).

Definition: Any function that satisfies the iteration relation (rel1),(rel2)(rel1), (rel2) is called cylindrical function.

Think: How about

ddx[x±mJm(ax)]?(a=constantC)\frac{ \text{d}}{ \text{d} x } [x^{\pm m} J_m(ax)]? \quad(a = \text{constant} \in \Complex)

Integral expression

The integral expression of Bessel function can be derived by the generating function. Below is the deriviation.

Let t=eiθt = e^{i\theta}, the generating function becomes

eixsinθ=n=Jn(x)einθ(1)e^{ix\sin\theta} = \sum_{n=-\infty}^{\infty} J_n(x) e^{in\theta} \tag1

eq.(1) has the same form of Fourier Series. Take the FT(Fourier Transformation) of eixsinθe^{ix\sin\theta}, we can get the integreal expression of Bessel equation:

Jn(x)=12πππ[cos(xsinθnθ)+isin(xsinθnθ)]dθJ_n(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} [\cos(x\sin\theta - n\theta) + i\sin(x\sin\theta - n\theta)] \text{d}\theta

Because of the 2nd item inside the integral sign is an odd function, so the integral expression can be further simplified to

Jn(x)=12πππ[cos(xsinθnθ)]dθ\boxed{J_n(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} [\cos(x\sin\theta - n\theta)] \text{d}\theta}

Cylindrical function

As mentioned in Iteration relation, any function that satisfies the (rel1),(rel2)(rel1), (rel2) is defined as the cylindrical function. Here are three common-used cylindrical function:

  • Bessel function, Jν(x)=cosνπJν(x)Jν(x)sinνπJ_\nu(x) = \frac{ \cos\nu\pi J_\nu(x) - J_{-\nu}(x) }{ \sin\nu\pi };
  • Neumann function, Nν(x)=Jν(x)+iNν(x)N_\nu(x) = J_\nu(x) + i N_\nu(x);
  • Hankel function, Hν(x)=Jν(x)iNν(x)H_\nu(x) = J_\nu(x) - i N_\nu(x).

Note: A problem occured in the definition of Neumann function: νN    Nν(x)do not exits\nu\in\N \implies N_\nu(x)\text{do not exits}.

A understanding of this phenomenon is: Nν(x)N_\nu(x) is an approaching process, i.e. Nm(x)=limνmJν(x)N_m(x) = \lim_{\substack{\nu \to m}}J_\nu(x).

Asympototic relation

limx0Jm(x)={0m01mN&m>0limxJν(x)2πxcos(xνx2π4)limx0Nν(x)Γ(ν)π(x2)νlimxNν(x)2πxsin(xνx2π/4)\begin{aligned} \lim_{\substack{x \to 0 }} J_m (x) &= \begin{cases} 0 & m \neq 0 \\ 1 & m \in N \And m > 0\end{cases} \newline \lim_{\substack{x\to\infty} } J_\nu(x) &\sim \sqrt{ {2 \over \pi x} } \cos (x - {\nu x \over 2 } - {\pi \over 4})\newline \lim_{\substack{x\to 0}} N_\nu(x) &\sim -{ \Gamma(\nu) \over \pi } \big( {x \over 2 } \big)^{ -\nu } \newline \lim_{\substack{x\to \infty}} N_\nu(x) &\sim \sqrt{ {2 \over \pi x } }\sin( x - {\nu x \over 2 } - \pi/4 )\end{aligned}

Some use of Bessel equation

The example below demostrates how to expand plane wave by the Bessel function.

Let t=ieiθt = ie^{i\theta}, then the equation above becomes

eixcosθ=Jn(x)ineinθ=J0(x)+n=1inJn(x)einθ+Jn(x)ineinθ=J0(x)+2n=0inJn(x)cos(nθ)(2)\begin{aligned} e^{ix\cos\theta} &= \sum_{-\infty}^{\infty} J_n(x) i^n e^{in\theta} \\ &= J_0(x) + \sum_{n=1}^{\infty} i^n J_n(x)e^{in\theta} + J_{-n}(x) i^n e^{-in\theta} \\ &= J_0(x) + 2 \sum_{n=0}^{\infty} i^n J_n(x) \cos(n\theta) \end{aligned} \tag2

In the last step of the deriviarion, we used the fact that Jn(x)=(1)nJn(x)J_{-n}(x) = (-1)^n J_n(x) and eix+eix=2cosxe^{ix} + e^{-ix} = 2 \cos x.

If we let x=krx = kr, where kk is the magnitude of the wave vector, and rr is the distance, eq.(2) represents the expansion of plane wave.

Others

Bessel functions with virtual viriables

Spherical Bessel function