电磁场在分界面处的衔接条件
电动力学的教材上一般会管这个叫"边值条件", 不过我觉得数理方程中的"衔接条件"更加形象生动一点.
还有一个"边界条件", 指的是所研究的整个系统的边界处场所满足的关系式. 而"衔接条件"指的是系统内不同均匀区域之间的分界处场所满足的关系式.
能用到的"衔接条件"如下. 设单位法向量 n ⃗ \vec n n 从介质 1 指向介质 2.
{ n ⃗ ⋅ ( D ⃗ 2 − D ⃗ 1 ) = σ f n ⃗ ⋅ ( B ⃗ 2 − B ⃗ 1 ) = 0 n ⃗ × ( E ⃗ 2 − E ⃗ 1 ) = 0 n ⃗ × ( H ⃗ 2 − H ⃗ 1 ) = α ⃗ f (1) \begin{cases}
\vec n\cdot (\vec D_2 - \vec D_1) &= \sigma_f \\
\vec n\cdot (\vec B_2 - \vec B_1) &= 0 \\
\vec n\times (\vec E_2 - \vec E_1) &= 0 \\
\vec n\times (\vec H_2 - \vec H_1) &= \vec\alpha_f \\
\end{cases} \tag1
⎩ ⎨ ⎧ n ⋅ ( D 2 − D 1 ) n ⋅ ( B 2 − B 1 ) n × ( E 2 − E 1 ) n × ( H 2 − H 1 ) = σ f = 0 = 0 = α f ( 1 )
注: 这些衔接条件是在电磁场还未解出的时候用的. 当电磁场已经解出之后, 便可以利用下面的几个式子来计算边界处的 面电荷/面电流 密度.
{ n ⃗ ⋅ ( D ⃗ 2 − D ⃗ 1 ) = σ f (free charge density) − n ⃗ ⋅ ( P 2 − P ⃗ 1 ) = σ b (bounded charge density) n ⃗ × ( H ⃗ 2 − H ⃗ 2 ) = α ⃗ f (free current density) n ⃗ × ( M ⃗ 2 − M ⃗ 1 ) = α M (magnetization current density) × ⃗ \begin{cases}
\vec n\cdot(\vec D_2-\vec D_1)&=\sigma_f\text{ (free charge density)}\\
-\vec n\cdot(P_2-\vec P_1)&=\sigma_b\text{ (bounded charge density)}\\
\vec n\times(\vec H_2-\vec H_2)&=\vec\alpha_f\text{ (free current density)}\\
\vec n\times(\vec M_2-\vec M_1)&=\alpha_M\text{ (magnetization current density)}\\
\vec{\times}
\end{cases}
⎩ ⎨ ⎧ n ⋅ ( D 2 − D 1 ) − n ⋅ ( P 2 − P 1 ) n × ( H 2 − H 2 ) n × ( M 2 − M 1 ) × = σ f (free charge density) = σ b (bounded charge density) = α f (free current density) = α M (magnetization current density)
直观理解一下衔接条件:
n ⃗ ⋅ ( D ⃗ 2 − D ⃗ 1 ) = σ f \vec n\cdot(\vec D_2-\vec D_1)=\sigma_f n ⋅ ( D 2 − D 1 ) = σ f 表示电位移矢量的法向跃变等于自由电荷面密度
n ⃗ ⋅ ( B ⃗ 2 − B ⃗ 1 ) = 0 \vec n\cdot(\vec B_2-\vec B_1)=0 n ⋅ ( B 2 − B 1 ) = 0 表示磁感应强度的法向分量是连续的
n ⃗ × ( E ⃗ 2 − E ⃗ 1 ) = 0 \vec n\times(\vec E_2-\vec E_1)=0 n × ( E 2 − E 1 ) = 0 表示电场强度的切向分量是连续的
n ⃗ × ( H ⃗ 2 − H ⃗ 1 ) = α ⃗ f \vec n\times(\vec H_2-\vec H_1)=\vec\alpha_f n × ( H 2 − H 1 ) = α f 表示磁场强度的切向跃变等于自由电流的面密度.
这些公式推导的过程大致如下 (仅详解关于电场的几个式子):
假定 n \bm n n 是从"下" (below) 指向"上" (above) 的单位法向量.
■ \blacksquare ■ 方程组1:
∵ { ∮ S D ⋅ d a = Q f ∮ S E ⋅ d a = ( Q f + Q b ) / ϵ 0 ∴ { n ⋅ ( D a b o v e − D b e l o w ) = σ f n ⋅ ( E a b o v e − E b e l o w ) = ( σ f + σ b ) / ϵ 0 ∵ D ≡ ϵ 0 E + P (Definition of Electric Dispalcement) ∴ ϵ 0 n ⋅ ( E a b o v e − E b e l o w ) + n ⋅ ( P a b o v e − P b e l o w ) = σ f ⇒ σ f + σ b + n ⋅ ( P a b o v e − P b e l o w ) = σ f ∴ σ b = − n ⋅ ( P a b o v e − P b e l o w ) \begin{gather*}
\because
\begin{cases}
\oint_S \bm D\cdot d\bm a=Q_f\\
\oint_S\bm E\cdot d\bm a=(Q_f+Q_b)/\epsilon_0\\
\end{cases}\tag{2}\\
\therefore
\begin{cases}
\bm n\cdot(\bm D_{above}-\bm D_{below})=\sigma_f \\
\bm n\cdot(\bm E_{above}-\bm E_{below})=(\sigma_f+\sigma_b)/\epsilon_0\\
\end{cases}\\
\because\bm D\equiv\epsilon_0\bm E+\bm P\text{ (Definition of Electric Dispalcement)}\\
\therefore\epsilon_0\bm n\cdot(\bm E_{above}-\bm E_{below})+\bm n\cdot
(\bm P_{above}-\bm P_{below})=\sigma_f\\
\Rightarrow\sigma_f+\sigma_b+\bm n\cdot(\bm P_{above}-
\bm P_{below})=\sigma_f\\
\therefore \sigma_b=-\bm n\cdot(\bm P_{above}-\bm P_{below})\\
\end{gather*}\\
∵ { ∮ S D ⋅ d a = Q f ∮ S E ⋅ d a = ( Q f + Q b ) / ϵ 0 ∴ { n ⋅ ( D ab o v e − D b e l o w ) = σ f n ⋅ ( E ab o v e − E b e l o w ) = ( σ f + σ b ) / ϵ 0 ∵ D ≡ ϵ 0 E + P (Definition of Electric Dispalcement) ∴ ϵ 0 n ⋅ ( E ab o v e − E b e l o w ) + n ⋅ ( P ab o v e − P b e l o w ) = σ f ⇒ σ f + σ b + n ⋅ ( P ab o v e − P b e l o w ) = σ f ∴ σ b = − n ⋅ ( P ab o v e − P b e l o w ) ( 2 )
这样, 便得到了跟电场/电位移/电荷面密度有关的三个式子:
{ n ⋅ ( D a b o v e − D b e l o w ) = σ f − n ⋅ ( P a b o v e − P b e l o w ) = σ b n ⋅ ( E a b o v e − E b e l o w ) = σ t o t a l (*) \begin{cases}
\bm n\cdot(\bm D_{above}-\bm D_{below})&=\sigma_f\\
-\bm n\cdot(\bm P_{above}-\bm P_{below})&=\sigma_b\\
\bm n\cdot(\bm E_{above}-\bm E_{below})&=\sigma_{total}\\
\end{cases}\tag{*}
⎩ ⎨ ⎧ n ⋅ ( D ab o v e − D b e l o w ) − n ⋅ ( P ab o v e − P b e l o w ) n ⋅ ( E ab o v e − E b e l o w ) = σ f = σ b = σ t o t a l ( * )
■ \blacksquare ■ 方程组2
对于磁场, 这也是类似的. 用
{ ∮ P H ⋅ d l = I f ∮ P B ⋅ d l = μ 0 ( I f + I M ) H ≡ B μ 0 − M (3) \begin{cases}
\displaystyle \oint_P \bm H\cdot d\bm l=\bm I_f\\
\displaystyle \oint_P \bm B\cdot d\bm l=\mu_0(I_f+I_M)\\
\displaystyle \bm H\equiv\frac{\bm B}{\mu_0}-\bm M\\
\end{cases}\tag3
⎩ ⎨ ⎧ ∮ P H ⋅ d l = I f ∮ P B ⋅ d l = μ 0 ( I f + I M ) H ≡ μ 0 B − M ( 3 )
便可以得到
{ n × ( H a b o v e − H b e l o w ) = α f n × ( B a b o v e − B b e l o w ) = α t o t a l n × ( M a b o v e − M b e l o w ) = α M (*) \begin{cases}
\bm n\times(\bm H_{above}-\bm H_{below})&=\bm\alpha_f\\
\bm n\times(\bm B_{above}-\bm B_{below})&=\bm\alpha_{total}\\
\bm n\times(\bm M_{above}-\bm M_{below})&=\bm\alpha_M \\
\end{cases}\tag{*}
⎩ ⎨ ⎧ n × ( H ab o v e − H b e l o w ) n × ( B ab o v e − B b e l o w ) n × ( M ab o v e − M b e l o w ) = α f = α t o t a l = α M ( * )
■ \blacksquare ■ 方程组3
最后, 利用
{ ∮ B ⋅ d a = 0 ∮ ∂ S E ⋅ d l = − ∂ ∂ t ∮ S B ⋅ d a (4) \begin{cases}
\oint \bm B\cdot d\bm a&=0\\
\oint_{\partial S} \bm E\cdot d\bm l&=-\frac{\partial}{\partial t}\oint_S\bm B\cdot d\bm a
\end{cases}\tag4
{ ∮ B ⋅ d a ∮ ∂ S E ⋅ d l = 0 = − ∂ t ∂ ∮ S B ⋅ d a ( 4 )
直接得到
{ n ⋅ ( B a b o v e − B b e l o w ) = 0 n × ( E a b o v e − B b e l o w ) = 0 (*) \begin{cases}
\bm n\cdot(\bm B_{above}-\bm B_{below})&=0\\
\bm n\times(\bm E_{above}-\bm B_{below})&=0\\
\end{cases}\tag{*}
{ n ⋅ ( B ab o v e − B b e l o w ) n × ( E ab o v e − B b e l o w ) = 0 = 0 ( * )
小结 - 推导的思路大致是如下:
∮ D ⋅ d a = Q f ⇒ n ⋅ ( D 2 − D 1 ) = σ f ∮ B ⋅ d a = 0 ⇒ n ⋅ ( B 2 − B 1 ) = 0 ∮ E ⋅ d l = 0 ⇒ n × ( E 2 − E 1 ) = 0 ∮ H ⋅ d l = J f ⇒ n × ( H 2 − H 1 ) = α f \begin{gather*}
\oint \bm D\cdot d\bm a=Q_f\Rightarrow \bm n\cdot(\bm D_2-\bm D_1)=\sigma_f\\
\oint\bm B\cdot d\bm a=0\Rightarrow\bm n\cdot(\bm B_2-\bm B_1)=0\\
\oint\bm E\cdot d\bm l=0\Rightarrow\bm n\times(\bm E_2-\bm E_1)=0\\
\oint\bm H\cdot d\bm l=\bm J_f\Rightarrow\bm n\times(\bm H_2-\bm H_1)=\bm\alpha_f\\
\end{gather*}\\
∮ D ⋅ d a = Q f ⇒ n ⋅ ( D 2 − D 1 ) = σ f ∮ B ⋅ d a = 0 ⇒ n ⋅ ( B 2 − B 1 ) = 0 ∮ E ⋅ d l = 0 ⇒ n × ( E 2 − E 1 ) = 0 ∮ H ⋅ d l = J f ⇒ n × ( H 2 − H 1 ) = α f
then,
{ D ≡ ϵ 0 E − P H ≡ B / μ 0 − M ⇒ { n ⋅ ( P 2 − P 1 ) = σ b n × ( H 2 − H 1 ) = α M \begin{cases}
\bm D\equiv\color{red}{\epsilon_0}\color{black}{\bm E}-\bm P\\
\bm H\equiv\bm B/\color{red}{\mu_0}\color{black}{-\bm M}
\end{cases}
\Rightarrow
\begin{cases}
\bm n\cdot(\bm P_2-\bm P_1)&=\sigma_b\\
\bm n\times(\bm H_2-\bm H_1)&=\bm\alpha_M\\
\end{cases}\\
{ D ≡ ϵ 0 E − P H ≡ B / μ 0 − M ⇒ { n ⋅ ( P 2 − P 1 ) n × ( H 2 − H 1 ) = σ b = α M