电磁场在分界面处的衔接条件

电动力学的教材上一般会管这个叫"边值条件", 不过我觉得数理方程中的"衔接条件"更加形象生动一点.

还有一个"边界条件", 指的是所研究的整个系统的边界处场所满足的关系式. 而"衔接条件"指的是系统内不同均匀区域之间的分界处场所满足的关系式.

能用到的"衔接条件"如下. 设单位法向量 n\vec n 从介质 1 指向介质 2.

{n(D2D1)=σfn(B2B1)=0n×(E2E1)=0n×(H2H1)=αf(1)\begin{cases} \vec n\cdot (\vec D_2 - \vec D_1) &= \sigma_f \\ \vec n\cdot (\vec B_2 - \vec B_1) &= 0 \\ \vec n\times (\vec E_2 - \vec E_1) &= 0 \\ \vec n\times (\vec H_2 - \vec H_1) &= \vec\alpha_f \\ \end{cases} \tag1

注: 这些衔接条件是在电磁场还未解出的时候用的. 当电磁场已经解出之后, 便可以利用下面的几个式子来计算边界处的 面电荷/面电流 密度.

{n(D2D1)=σf (free charge density)n(P2P1)=σb (bounded charge density)n×(H2H2)=αf (free current density)n×(M2M1)=αM (magnetization current density)×\begin{cases} \vec n\cdot(\vec D_2-\vec D_1)&=\sigma_f\text{ (free charge density)}\\ -\vec n\cdot(P_2-\vec P_1)&=\sigma_b\text{ (bounded charge density)}\\ \vec n\times(\vec H_2-\vec H_2)&=\vec\alpha_f\text{ (free current density)}\\ \vec n\times(\vec M_2-\vec M_1)&=\alpha_M\text{ (magnetization current density)}\\ \vec{\times} \end{cases}

直观理解一下衔接条件:

  • n(D2D1)=σf\vec n\cdot(\vec D_2-\vec D_1)=\sigma_f 表示电位移矢量的法向跃变等于自由电荷面密度
  • n(B2B1)=0\vec n\cdot(\vec B_2-\vec B_1)=0 表示磁感应强度的法向分量是连续的
  • n×(E2E1)=0\vec n\times(\vec E_2-\vec E_1)=0 表示电场强度的切向分量是连续的
  • n×(H2H1)=αf\vec n\times(\vec H_2-\vec H_1)=\vec\alpha_f 表示磁场强度的切向跃变等于自由电流的面密度.

这些公式推导的过程大致如下 (仅详解关于电场的几个式子):

假定 n\bm n 是从"下" (below) 指向"上" (above) 的单位法向量.

\blacksquare 方程组1:

{SDda=QfSEda=(Qf+Qb)/ϵ0{n(DaboveDbelow)=σfn(EaboveEbelow)=(σf+σb)/ϵ0Dϵ0E+P (Definition of Electric Dispalcement)ϵ0n(EaboveEbelow)+n(PabovePbelow)=σfσf+σb+n(PabovePbelow)=σfσb=n(PabovePbelow)\begin{gather*} \because \begin{cases} \oint_S \bm D\cdot d\bm a=Q_f\\ \oint_S\bm E\cdot d\bm a=(Q_f+Q_b)/\epsilon_0\\ \end{cases}\tag{2}\\ \therefore \begin{cases} \bm n\cdot(\bm D_{above}-\bm D_{below})=\sigma_f \\ \bm n\cdot(\bm E_{above}-\bm E_{below})=(\sigma_f+\sigma_b)/\epsilon_0\\ \end{cases}\\ \because\bm D\equiv\epsilon_0\bm E+\bm P\text{ (Definition of Electric Dispalcement)}\\ \therefore\epsilon_0\bm n\cdot(\bm E_{above}-\bm E_{below})+\bm n\cdot (\bm P_{above}-\bm P_{below})=\sigma_f\\ \Rightarrow\sigma_f+\sigma_b+\bm n\cdot(\bm P_{above}- \bm P_{below})=\sigma_f\\ \therefore \sigma_b=-\bm n\cdot(\bm P_{above}-\bm P_{below})\\ \end{gather*}\\

这样, 便得到了跟电场/电位移/电荷面密度有关的三个式子:

{n(DaboveDbelow)=σfn(PabovePbelow)=σbn(EaboveEbelow)=σtotal(*)\begin{cases} \bm n\cdot(\bm D_{above}-\bm D_{below})&=\sigma_f\\ -\bm n\cdot(\bm P_{above}-\bm P_{below})&=\sigma_b\\ \bm n\cdot(\bm E_{above}-\bm E_{below})&=\sigma_{total}\\ \end{cases}\tag{*}

\blacksquare 方程组2

对于磁场, 这也是类似的. 用

{PHdl=IfPBdl=μ0(If+IM)HBμ0M(3)\begin{cases} \displaystyle \oint_P \bm H\cdot d\bm l=\bm I_f\\ \displaystyle \oint_P \bm B\cdot d\bm l=\mu_0(I_f+I_M)\\ \displaystyle \bm H\equiv\frac{\bm B}{\mu_0}-\bm M\\ \end{cases}\tag3

便可以得到

{n×(HaboveHbelow)=αfn×(BaboveBbelow)=αtotaln×(MaboveMbelow)=αM(*)\begin{cases} \bm n\times(\bm H_{above}-\bm H_{below})&=\bm\alpha_f\\ \bm n\times(\bm B_{above}-\bm B_{below})&=\bm\alpha_{total}\\ \bm n\times(\bm M_{above}-\bm M_{below})&=\bm\alpha_M \\ \end{cases}\tag{*}

\blacksquare 方程组3

最后, 利用

{Bda=0SEdl=tSBda(4)\begin{cases} \oint \bm B\cdot d\bm a&=0\\ \oint_{\partial S} \bm E\cdot d\bm l&=-\frac{\partial}{\partial t}\oint_S\bm B\cdot d\bm a \end{cases}\tag4

直接得到

{n(BaboveBbelow)=0n×(EaboveBbelow)=0(*)\begin{cases} \bm n\cdot(\bm B_{above}-\bm B_{below})&=0\\ \bm n\times(\bm E_{above}-\bm B_{below})&=0\\ \end{cases}\tag{*}


小结 - 推导的思路大致是如下:

Dda=Qfn(D2D1)=σfBda=0n(B2B1)=0Edl=0n×(E2E1)=0Hdl=Jfn×(H2H1)=αf\begin{gather*} \oint \bm D\cdot d\bm a=Q_f\Rightarrow \bm n\cdot(\bm D_2-\bm D_1)=\sigma_f\\ \oint\bm B\cdot d\bm a=0\Rightarrow\bm n\cdot(\bm B_2-\bm B_1)=0\\ \oint\bm E\cdot d\bm l=0\Rightarrow\bm n\times(\bm E_2-\bm E_1)=0\\ \oint\bm H\cdot d\bm l=\bm J_f\Rightarrow\bm n\times(\bm H_2-\bm H_1)=\bm\alpha_f\\ \end{gather*}\\

then,

{Dϵ0EPHB/μ0M{n(P2P1)=σbn×(H2H1)=αM\begin{cases} \bm D\equiv\color{red}{\epsilon_0}\color{black}{\bm E}-\bm P\\ \bm H\equiv\bm B/\color{red}{\mu_0}\color{black}{-\bm M} \end{cases} \Rightarrow \begin{cases} \bm n\cdot(\bm P_2-\bm P_1)&=\sigma_b\\ \bm n\times(\bm H_2-\bm H_1)&=\bm\alpha_M\\ \end{cases}\\